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Abstract

We stated in S�aanchez et al. (Proc. 15th IMACS World Congress, Vol. 5, 1997, p. 513), the objective rate law

governing the general evolution, nucleation, growth and convection, of a diluted 3D population of arbitrarily oriented,

penny-shaped, non-interacting stable microcracks that is dragged along the flow of a regular motion of a simple

continuous body of brittle material.

This requires the prior analysis of the convection process in the hypothesis of ignoring crack nucleation. It follows

that the evolution of the microcrack population is here due only to the rotation of the crack planes as a consequence of

the deformation processes of the microcracked brittle solid.

The determinant role of this case in the general evolution problem, is also so in its numerical treatment.

In this paper, use is made of the Bubnov–Galerkin spectral method with respect to the angular variable defining the

orientation of a crack to numerically solve the mathematical model of the pure convection of microcracks in the no-

nucleation hypothesis.

The paper is completed with three applications. The corresponding microcracks evolutions have been graphically

displayed showing a behaviour that agrees with the expected.

Indications about the computer codes implementing the numerical algorithm are included in an appendix. � 2002

Elsevier Science Ltd. All rights reserved.

Keywords: Microcrack evolution; Brittle material; Computational micromechanics model; Galerkin method (method of spherical

harmonics); Pseudospectral method

1. Introduction

Our objective is the analysis concerning the convection process of non-interacting stable microcracks
embedded in a matrix in the hypothesis of ignoring crack nucleation.

In a simple body B of brittle material a diluted 3D population of penny-shaped microcracks will be
dragged along the flow of a regular motion t ! /t. We assume implicitly that cracks move without getting
out of their planes so that the orientation of an individual crack following the material movement is given
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by an inextensible vector, normal to its plane not necessarily a unit. The non-interacting microcracks
approximation will be adopted.

We will also assume the no-nucleation no-growth hypothesis. In this hypothesis the radius of each
penny-shaped microcrack remains constant along the motion.

We prove that the evolution of the microcrack population is here due to the rotation of the crack planes
as a consequence of the deformation processes of the microcracked solid.

We consider the analysis of this case as an indispensable step towards more complex models.
Our point of view considers a microspace } attached to each point of the brittle microcracked solid B.

This microspace is in general, a Cartesian product of submanifolds of R3 in which the internal parameters
needed to describe the microcrack population evolution vary.

The evolution process is then described in terms of the new body B� }. A motion of B� } is a curve
ðt ! Bt � }Þ defined by an evolution operator that extends the flow of our motion by joining as a second
operator a smooth flow describing the evolution of the internal parameters. Therefore, the Lie differenti-
ation would be available for these generalised flows on Bt � } with its objectivity properties including even
the ‘‘diffeomorphism-like’’ spatial covariance objectivity (Simo, 1988).

In the general case, the extra microscopic variables needed to describe the microcrack pattern (Krajci-
novic and Lemaitre, 1987) would be the radius, or the area, of the crack that defines the shape of each penny-
shaped crack in the elastic matrix, the material coordinates of the crack center defining the position of each
defect, and the normal to the crack plane defining its orientation. Our approach allows us to consider the
evolution of the microspace as a ‘‘product’’ of evolution operators depending on the microcrack variables.

Once the general evolution laws are stated, and the mathematical model is correctly posed, a multidi-
mensional pseudospectral numerical method blending different approximations in each of the submanifolds
in the microspace (Canuto et al., 1988) can be used to approximately solve the problem respecting the
conceived structure. The change of orientation of a crack is not influenced by the other microvariables
consequently, its contribution to the general evolution of the microcrack population can be studied sep-
arately. The numerical implementation of this model, problem that we solve in this paper, will be essential
in the numerical solution of the general model which will be a finite expansion in terms of the tensor
product basis of the functional spaces involved in the pseudospectral method.

2. Microcrack population evolution law

2.1. General considerations and notation

We consider a regular motion t ! /t of a simple continuous body of brittle material B.
The collection of orientation preserving diffeomorphisms /t;s ¼ /t � /�1

s mapping/sðBÞ ¼ Bs onto/tðBÞ ¼
Bt, is the time-dependent flow, the evolution operator, of the spatial velocity vector field v of our motion.

Both the time-independent configuration of the body B and the present time configuration Bs, will be
reference configurations.

‘‘Determinism’’ is expressed by the Chapman–Kolmogorov law (Marsden and Hughes, 1983)
/s;t � /t;s ¼ /s;s and /s;s ¼ identity for all s, t, s 2 R for which the flow /s;s is defined.

We write x ¼ /t;sðX ; tÞ, so that points in Bs, and also in B, will be denoted by capital letters. Coordinate
systems on the ambient space R3 are denoted by fxig while those on B or Bs are denoted by fX Ig. The
corresponding spatial and material local bases in the tangent and the cotangent spaces are denoted by
feiðxÞg, fdxig, fEiðX Þg and fdX Ig respectively. The usual inner product in R3 will be denoted by ð�j�Þ.

Ut;s represents the deformation gradient of the flow. For each X 2 Bs, Ut;sðX Þ is the two-point tensor
TX/t;s, the linear isomorphism from TXBs to TxBt tangent to the flow at X. Its matrix with respect to the local
bases fEiðX Þg and feiðxÞg is
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ðUt;sÞiKðX Þ ¼
o/i

t;s

oXK
ðX Þ

A vector a engraved on the body at the point X in Bs, is transformed within the first order into the vector
Ut;sðaÞ engraved on the body at the point x ¼ /t;sðX Þ in Bt at time t. 1 Thusat the microcrack scale the
general flow /t;s induces a convection whose evolution operator is Ut;s.

2 Thislinear local flow generates
other evolution linear local operators, UT

t;s the transposed of the deformation gradient and the so-called
spatial deformation gradients, U�1

t;s ¼ Us;t and U�T
t;s ¼ ðU�1

t;s Þ
T
that also satisfy the Chapman–Kolmogorov

law.
In particular U�T

t;s ¼ Tx/
�1
t;s

� �T
: T 


XBs ! T 

x Bt, with matrix

U�T
t;s ðxÞ

� �i
I
¼

o /�1
t;s

� �I
oxi

ðxÞ

with respect to the dual local bases, fdX Ig and fdxig plays an important role in this paper.

2.2. Analysis of deformation

As was mentioned before, the orientation of an individual crack following the material movement is
given by a vector n, normal to its plane not necessarily a unit. This vector is inextensible throughout the
evolution process because the orientation of the microcrack does not depend on the length of n. Functions
depending on the orientation must be zero degree homogeneous. Consequently they only need to be defined
on S2, the unit sphere of R3, in which case they must have the same value for any unit vector and its op-
posite, vectors defining the same orientation. 3 To allow the extra microscopic degrees of freedom necessary
to define the orientation of the crack we modify the containing space R3 by ‘‘adding’’ the microspace S2.
The modified space is then R3 � S2 and the corresponding new body B� S2.

1 Indeed, the material vector a ¼ XP 2 TXR3 is flow-dragged to /t;sðaÞ ¼ /t;sðP Þ � /t;sðX Þ. The components of this convected vector

can be described by a Taylor expansion

ð/t;saÞ ¼ /t;sðP Þ � /t;sðX Þ ¼
X
K

ðUt;sÞiKðX ÞaK þ � � �

2 Using the chain rule in /s;t � /t;s ¼ /s;s we have for all X 2 Bs

T/t;sðX Þ/s;t � TX/t;s ¼ TX/s;s
that is

Us;tð/t;sðX ÞÞ � Ut;sðX Þ ¼ Us;sðX Þ

so that Us;t � Ut;s ¼ Us;s and Us;s ¼ id for all s, t, s 2 R for which the flow Us;s is defined.

3 Any continuous function f on S2, has a continuous extension ~ff to R3 � 0 ¼ R3

 defined by ~ff ðnÞ ¼ f ðn=knkÞ which is positively

homogeneous of degree zero.

Conversely, any continuous function g on R3

 positively homogeneous of degree zero is of the form g ¼ ~ff where its generator f is the

restriction gjS2 of g to the unit sphere S2.

When g is zero degree homogeneous, its generator f must satisfy for every n 2 S2, the property f ðnÞ ¼ f ð�nÞ, therefore in order to

define g, it suffices to give the values f ðnÞ of its generator on the subset A of S2 described in Cartesian coordinates by

A ¼ ð1; 0; 0Þ [ D1 \ Hþ
2 [ S2 \ Hþ

3 , where H
þ
i represents the half space xi > 0 ði ¼ 2; 3Þ, and D1 is the unit disk in the plane H3 ¼ 0.

Thereafter, this function is extended to S2 by writing f ðnÞ ¼ f ð�nÞ, for every n in S2 that is not in A, and in a final step to R3



recalling that the values at n and ðn=knkÞ 2 S2 must be equal.

The functions depending on the orientation are zero degree homogeneous in R3

 and assuming adequate properties of differen-

tiability, they will satisfy the Eulers theorem that will still hold when their generators on S2 are considered. This fact will be used in

some of the coordinates computations later on. In general, we shall not distinguish between f and ~ff .
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A state of our physical system at time t is a couple ðx; ntÞ 2 Bt � S2, defined by the spatial point x and a
normal unit vector nt to the plane of the crack. Let ut;s be the evolution operator ðX ; nsÞ ! ðx; ntÞ that maps
a state at time s to what the state would be at time t after time t � s has elapsed. ut;s ¼ /t;s;wt;s

� �
:

Bs � S2 ! Bt � S2 is made up with the flow /t;s of v and the flow wt;s of w, the time-dependent vector field
on S2 defining the rate of change in orientations of the microcrack population convected by the flow. By
studying the motion of an individual crack that follows the material movement, we define the evolution
operator wt;s that relates, for a fixed particle X 2 Bs and any size of crack opening, the unit normal ns to the
plane Rs of a microcrack at time s, to nt the unit normal, to the plane Rt ¼ Ut;sðX Þ � Rs, that contains the
microcrack at time t when is convected by the material from Bs to Bt without opening new surface area.

ns can be described in terms of the one form as such that as ^ l ¼ x, where x and l are the volume
elements defining the canonical orientation in R3 and S2 respectively (see Chapter 2, Box 2.1 of Marsden
and Hughes (1983)). We say that as is the unit normal to Rs. The same unit normal thought of as a vector ns,
satisfies that l is the interior product l ¼ insx, of ns and x.

If ns is described in terms of as, nt will be described in terms of at ¼ ð/t;sÞ
as, the push-forward of as.
By definition at ¼ ð/�1

t;s Þ

as so that

atðxÞðeaÞ ¼ as /�1
t;s ðxÞ

� �
Tx/

�1
t;s

� �
ðeaÞ ¼ as /�1

t;s ðxÞ
� �

U�1
t;s ðxÞ

� �
ðeaÞ

with

U�1
t;s ðxÞðeaÞ ¼

o/�1
t;s

oxa
ðxÞ ¼

X
A

o/�1
t;s

� �A
oxa

EA

and

ðatÞaðxÞ ¼
X
A

ðasÞA /�1
t;s ðxÞ

� � o/�1
t;s

� �A
oxa

ðxÞ

thus we have

atðxÞ ¼ U�T
t;s ðxÞ as � /�1

t;s

� �
ðxÞ

Going back to ns with the adequate isomorphisms, we see that U�T
t;s � ns defines a normal vector to Rt not

necessarily a unit.
Considering that nt is a unit, we got

nt ¼ wt;sðnsÞ ¼
U�T

t;s ðnsÞ
kU�T

t;s ðnsÞk
ð1Þ

Once the evolution operator wt;s is defined, we need to find the unique time-dependent field of contra-
variant vectors w over S2, spatial velocity vector field of our motion. 4 wtðnÞ is the tangent vector at
ws;sðnsÞ ¼ ns to the curve t ! wt;sðnsÞ

� �
, and is defined for all n in S2 by

wtðnÞ ¼
d

dt
wt;sðnsÞ
� �

jt¼s
¼ d

dt

U�T
t;s ns

kU�T
t;s nsk

" #
jt¼s

ð2Þ

4 Usually what is given is the time-varying vector field wt defining the law of motion and the corresponding evolution operator wt;s is

defined by

d
dt wt;sðnÞ
� �

¼ wt wt;sðnÞ
� �

ws;sðnÞ ¼ n
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Introducing the auxiliary functions g : x ! kxk�1 ¼ xjxð Þ�1=2
, C1 for x 6¼ 0, and f ðtÞ ¼ U�T

t;s ns we can write

U�T
t;s ns

kU�T
t;s nsk

¼ f ðtÞðg � f ÞðtÞ

Recalling that

g0ðxÞu ¼ � 1

kxk3
ðxjuÞ

and

f 0ðtÞ ¼
dU�T

t;s

dt
ns

we get

d

dt

U�T
t;s ns

kU�T
t;s nsk

" #
¼ f 0ðtÞðg � f ÞðtÞ þ f ðtÞðg � f Þ0ðtÞ ¼ f 0ðtÞðg � f ÞðtÞ � 1

kf 0ðtÞk3
f ðtÞjf 0ðtÞ
� �

so that

dnt

dt
¼ d

dt

U�T
t;s ns

kU�T
t;s nsk

" #
¼

dU�T
t;s

dt ns

kU�T
t;s nsk

�
U�T

t;s nsj
dU�T

t;s

dt ns

� �
kU�T

t;s nsk
3

U�T
t;s ns ð3Þ

The material derivative of Ut;s is (Malvern, 1969)

dUt;s

dt
¼ gradv � Ut;s

where gradv represents the gradient in configuration Bt of the spatial velocity field.
We also have

dUT
t;s

dt
¼ UT

t;s � ðgradvÞ
T ð4Þ

and 5

dU�T
t;s

dt
¼ � gradvð ÞT � U�T

t;s

5 From the evident identity

UT
t;sðX Þ � U�T

t;s ðxÞ ¼ idT 

X Bs

we get

0 ¼ UT
t;sðX Þ �

dU�T
t;s

dt
ðxÞ þ

dUT
t;s

dt
ðX Þ � U�T

t;s ðxÞ

where 0 denotes the zero operator.

Suppressing the arguments and solving for dUT
t;s=dt

dUT
t;s

dt
¼ �UT

t;s �
dU�T

t;s

dt
� UT

t;s

and plugging it in the LHS of Eq. (4), we get

dU�T
t;s

dt
¼ � gradvð ÞT � U�T

t;s
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so that

dnt

dt
¼ �

ðgradvÞT � U�T
t;s

kU�T
t;s nsk

ns þ
gradvÞT � U�T

t;s

� �
nsjU�T

t;s ns

� �
kU�T

t;s nsk
3

U�T
t;s ns

Putting t ¼ s and remembering that Us;s ¼ idT 

X Bs and ns ¼ nt, we get finally the expression defining the

spatial velocity vector field of our motion on S2.

wðnÞ ¼ ðgradvÞT � njn
� �

n� ðgradvÞT � n ð5Þ

Also on R3

 when the normal vector n is not a unit, but it is inextensible we get.

wðnÞ ¼
ðgradvÞT � njn
� �

knk2
n� ðgradvÞT � n ð6Þ

that we can write

wðnÞ ¼ An� ðgradvÞT � n ð7Þ

with

A ¼
ðgradvÞT � njn
� �

knk2

A is a real zero degree homogeneous function of n so that njgradnAð Þ ¼ 0 (Euler’s theorem).
In both cases, wðnÞjnð Þ ¼ 0, expressing that n being inextensible, remains orthogonal to its velocity,

relation that will hold as long as knk is constant along the motion.
Once the vector field v;wð Þ : Bt � S2 ! Tðx;nÞ R3 � S2ð Þ ¼ ðR3Þx � TnS2 tangent at time t to the flow ut;s is

defined, the push-forward and pull-back operators induced by ut;s, or any of its components /t;s and wt;s,
can be defined in the usual way; and as a consequence, we can find Lie derivatives of smooth time changing
tensor fields along these flows.

2.3. Mathematical description of the microcrack population

We postulate the existence of a time-dependent real function Nðx; t; nÞ, defined at time t on Bt � S2,
representing for any size of microcracks, the time evolution of the density of the distribution of the normal
vectors to the microcracks per unit volume, per unit of solid angle of S2. Physically, Nðx; t; nÞ is interpreted
as the density (number) of microcracks per unit volume at x, per unit solid angle at n at time t.

For a fixed spatial point x, Nðx; t; nÞ is a comodular scalar, the unique component of a time-dependent
two-exterior differential form bt on S2 and must satisfy

Nðx; t; nÞ ¼ Nðx; t;�nÞ ð8Þ
As we have mentioned before, N can be extended to R3


 maintaining the zero degree homogeneity
property by writing for n 6¼ 0

Nðx; t; nÞ ¼ N x; t;
n

knk

� �
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therefore, assuming that N is C1 in R3

, the Euler’s theorem holds. 6

n gradnNjð Þ ¼ 0 ð9Þ

Equality that is also true when n is a unit vector.
In the sequel, n will denote either a unit vector, or an inextensible vector, not necessarily a unit. 7

2.4. Objective convected rate of the density of normals distribution

To estimate the change in Nðx; t; nÞ when we convect n, according to the flow wt;s, we state in the no-
nucleation hypothesis the conservation law

d

dt

Z
wt;sðP Þ

bt ¼ 0 ð10Þ

where P is any nice open set of S2 (see e.g. Marsden and Hughes (1983) and Abraham et al. (1988))
Using the generalised transport theorem

d

dt

Z
wt;sðP Þ

bt ¼
Z

wt;sðP Þ
Lwtbt ð11Þ

we have,Z
wt;sðP Þ

Lwtbt ¼ 0 ð12Þ

for any P, condition that we will express in local differential form as

Lwtbt ¼ 0 ð13Þ

after this localisation process we get (S�aanchez et al., 1997) 8

6 Considerations of N being a distribution not necessarily differentiable in the usual way do not affect the problem.

We can use the following characterisation of a homogeneous distribution. N 2 D0ðRnÞ is homogeneous of degree p 2 R, iff

Xn
i¼1

xi
oNðx; t; nÞ

oxi
¼ pNðx; t; nÞ

N being a zero degree homogeneous distribution should satisfy Eq. (9) in the distributional sense.
7

Lwtbt ¼
obt

ot
þ Lwtbtð Þ

where L is the autonomous Lie derivative (Marsden and Hughes, 1983).

8 Recalling the definition of divergence of a vector field V on an orientable manifold X with volume form l, as the comodular scalar

such that LVðlÞ ¼ divlV
� �

l and the equality

Vða ^ bÞ ¼ LVðaÞ ^ b þ a ^ LVðbÞ
we have

Lwtbt ¼ Lwt ðNlÞ ¼ Lwt Nð Þl þ NLwtl ¼ Lwt Nl
�

þ Ndivl wt

�
l ¼ gradl N jwt

� ��
þ Ndivlwt

�
l

Using the Hodge star operator we get

Lwtbtð Þ
 ¼ gradl N jwt þ Ndivl wt

In our case (non-autonomous Lie derivative)

Lwtbtð Þ
 ¼ oN
ot

þ Lwtbtð Þ
 ¼ oN
ot

þ gradl N jwt

� �
þ Ndivl wt
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Lwtbtð Þ
 ¼ oN
ot

þ wtjgradnNð Þ þ Ndivn wt ¼ 0 ð14Þ

Going back to the expression (7) where we had defined wtðnÞ, we see that

divn wt ¼ divn ðAnÞ � divn ðgradx vÞ
T � n

h i
and 9

divn ðAnÞ ¼ Adivn nþ njgradnAð Þ ¼ Adivn n ¼ 3Adivn ðgradx vÞ
T � n

h i
¼ ðdivx vÞ

thus we have

divn wt ¼ 3A� ðdivx vÞ ð15Þ
We also have

wtjgradnNð Þ ¼ AnjgradnNð Þ � ððgradx vÞ
T
njgradnNÞ ¼ �ððgradx vÞ

T
njgradnNÞ ð16Þ

plugging the LHS of Eqs. (15) and (16) into Eq. (14) gives us the equation.

ðLwtbtÞ

 ¼ oN

ot
� ððgradx vÞ

T
njgradnNÞ þ 3N

knk2
ðnjðgradx vÞ

T
nÞ � Ndivx v ¼ 0 ð17Þ

3. Formulation of the model

We assume that for each ðx; tÞ, N : n ! Nðt; x; nÞ with n 2 S2, is an element of the Hilbert space L2ðS2Þ,
with the usual inner product ð�; �Þ and associated norm k � k2.
N is the trace over S2 of an element also denoted N, that belongs to H 1ðR3


Þ. More precisely, the generator
of N, varies in the subspace V of L2ðS2Þ consisting of all functions satisfying the homogeneity condition
Nðt; x; nÞ ¼ Nðt; x;�nÞ.

The convected time rate equation (14), defines a homogeneous linear convection PDE (E) with con-
vection velocity wðx; t; nÞ, x 2 Bt, tP 0 and n 2 S2, that with the zero degree homogeneity condition, and the
corresponding initial condition, defines the evolution problem (18)

oN
ot þ wtjgradnNð Þ þ Ndivn wt ¼ 0 ðEÞ
Nðt; x; nÞ ¼ Nðt; x;�nÞ ðzero degree conditionÞ
N0ðx; r; nÞ is known

8<
: ð18Þ

Introducing the linear (spatial) differential operator

Lðx; t; nÞ ¼ ðgradxvÞ
T
njgradn

� �
� 3

knk2
njðgradxvÞ

T
n

� �"
� divx v

#
IdjV ð19Þ

9 Recalling that A is a real zero degree homogeneous function of n so that ðnjgradnAÞ ¼ 0.

Also from

ðgradx vÞ
T � n ¼

X
m;a

ovm

oxa
nmea

we have

divn ðgradx vÞ
T � n

h i
¼
X
m;a

o ovm
oxa n

m
� �
ona

¼
X
m;a

ovm

oxa
onm

ona
¼
X
m;a

ovm

oxa
dm;a ¼

X
m

ovm

oxm
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where IdjV is the identity operator of L2ðS2Þ restricted to V, Eq. (17) can be written as

oN
ot

ðt; x; nÞ ¼ Lðx; t; nÞNðt; x; nÞ ð20Þ

Clearly DðLÞ the domain of L, is contained in L2ðS2Þ.
Thus problem (18) is equivalent to the Cauchy problem

oN
ot ¼ LðNÞ with N 2 V
N0 is known



ð21Þ

where N0 : n ! N0ðnÞ is in V and n varies in S2.

4. Numerical implementation of the model

4.1. Method of spherical harmonics

We will use the Bubnov–Galerkin weighted residual method to solve approximately problem (21) by
reducing it to a Cauchy problem for a system of ordinary differential equations.

The geometry of the problem suggest to choose the spherical harmonic functions

fqm;kg; mð ¼ 0; 1; 2; . . . ; k ¼ 0;� 1;� 2; . . . ;� mÞ

an orthonormal complete system on the unit sphere S2 equipped with the usual inner product and norm
(Neri, 1971), as possible basis functions.

After taking the classical spherical coordinates chart in S2, only the angular coordinates r ¼ ðu;
wÞ 2 R ¼ ½0; 2p� � ½0; p� intervene in the transformed equation. 10 The approximation FMðt; rÞ with M 2 N
to the solution Nðt; rÞ is sought in QM the linear subspace of L2ðRÞ spanned by the spherical harmonics of
degree up to M.

FMðt; rÞ ¼
XM
m¼0

Xþm

k¼�m

cm;kðtÞqm;kðrÞ ð22Þ

The basis functions are selected so that the trial functions, satisfy the homogeneity condition that is
expressed in spherical coordinates by

FMðt; p þ u; p � wÞ ¼ FMðt;u;wÞ

turning into

FMðt; p þ u; p � wÞ ¼ ð�1ÞMFMðt;u;wÞ

when plugged in Eq. (22).
This condition is fulfilled by the family ðfq2m;kg; m ¼ 0; 1; 2; . . . ; k ¼ 0;�1; . . . ;�2mÞ of the even degree

spherical harmonic functions. This family is an orthonormal complete system on V, consequently our
approximating space will be Q0

M the subspace of Q2M spanned by the family of the even degree spherical
harmonic functions up to the truncation level 2M , and the trial functions will be defined by the truncated
series

10 The system fqm;kg m ¼ 0; 1; 2; . . .; k ¼ 0;�1;�2; . . . ;�m is an orthonormal complete set on L2ðRÞ, so that

qm;kðrÞ; qr;sðrÞð Þ ¼
Z

r2R
qm;kðrÞqr;sðrÞdr ¼ dm;rdk;s

where dr ¼ sinwdwdu is the unit sphere measure in spherical coordinates.
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F2Mðt; rÞ ¼
XM
m¼0

Xþ2m

k¼�2m

c2m;kðtÞq2m;kðrÞ ð23Þ

4.2. The approximating system of ODE

The ð2M þ 1ÞðM þ 1Þ expansion coefficients c2m;k are determined from the condition expressing in L2ðRÞ
the orthogonality of the residual

RE FMðt; rÞð Þ ¼ oFMðt; rÞ
ot

� Lðt; rÞ ð24Þ

and each of the ð2M þ 1ÞðM þ 1Þ basis functions q2n;l with n ¼ 0; 1; 2; . . .; and l ¼ 0;�1; . . . ;�2n

REðFMðt; rÞÞ; q2m;kðrÞð Þ ¼
Z

r2R

oFMðt; rÞ
ot

�
� Lðt; rÞ

�
q2m;kðrÞdr ¼ 0 ð25Þ

Taking into consideration the orthonormal properties of the spherical harmonics functions and the ex-
pression in Cartesian coordinates of the operator L, we get the set of ordinary differential equations

n ¼ 0; 1; . . . ;M ; l ¼ 0;�1; . . . ;�2n

_cc2n;lðtÞ ¼
P3
i¼1

ovi
oxi

� �
c2n;lðtÞ þ

P3
i;j¼1

ovj
oxi

PM
m¼0

Pk¼2m

k¼�2m
c2m;kðtÞ

R
R nj

oq2m;kðrÞ
oni

q2n;lðrÞdr

� �

�3
P3
i;j¼1

ovj
oxi

PM
m¼0

Pk¼2m

k¼�2m
c2m;kðtÞ

R
R

ninj

knk2 q2m;kðrÞq2r;sðrÞdr

� �

8>>>>><
>>>>>:

ð26Þ

Denoting

Di;j;m;k;r;s ¼
Z

R
nj
oq2m;kðrÞ

oni
q2r;sðrÞdr ð27Þ

Bi;j;m;k;r;s ¼
Z

R

ninj

knk2
q2m;kðrÞq2r;sðrÞdr ð28Þ

and

Ai;j;m;k;r;s ¼ Di;j;m;k;r;s � 3Bi;j;m;k;r;s

the system of ODE defining the expansion coefficients can be written in the more compact way,

n ¼ 0; 1; . . . ;M ; l ¼ 0;�1; . . . ;�2n

_cc2n;lðtÞ ¼
P3
i¼1

ovi
oxi

� �
c2n;lðtÞ þ

P3
i;j¼1

ovj
oxi

PM
m¼0

Pk¼2m

k¼�2m
c2m;kðtÞAi;j;m;k;n;l

8<
: ð29Þ

4.3. The coefficients Ai;j;m;k;r;s

The integral expression

Ai;j;m;k;r;s ¼
Z

R
nj
oq2m;kðrÞ

oni

 
� 3

ninj

knk2
q2m;kðrÞ

!
q2r;sðrÞdr ð30Þ

defining the coefficients Ai;j;m;k;r;s depends only upon the basis functions and is not time-dependent.
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In order to evaluate these coefficients, we begin writing

oq2m;kðrÞ
oni

¼ oq2m;kðrÞ
ou

ou
oni

þ oq2m;kðrÞ
ow

ow
oni

ð31Þ

then we split Di;j;m;k;r;s as the sum of the two integrals

D1i;j;m;k;r;s ¼
Z

R
njq2r;sðrÞ

oq2m;kðrÞ
ou

ou
oni

dr

D2i;j;m;k;r;s ¼
Z

R
njq2r;sðrÞ

oq2m;kðrÞ
ow

ow
oni

dr

Using closed forms of the spherical harmonics q2m;k in terms of u and w (Korn and Korn, 1961) and the
following expressions of the components of n in spherical coordinates

ni ¼ knk di;1 cosuð þ di;2 sinu þ di;3Þ di;1ðð þ di;2Þ sinw þ di;3 coswÞ
ði ¼ 1; 2; 3Þ, we find expressions of each one of the four partial derivatives in the RHS of Eq. (31) as a
product of two factors depending each one of them only on one of the variables u and w.

This factorisation is particularly adequate for the evaluation process.
In particular we get

ou
oni

¼ � 1

knk sinw
½ � di;1 sinu þ di;2 cosu�

and

ow
oni

¼ � 1

knk di;1 cosuð þ di;2 sinu þ di;3Þ di;1ðð þ di;2Þ cosw � di;3 sinwÞ

With all this, we obtain expressions of D1i;j;m;k;r;s, D2i;j;m;k;r;s and Bi;j;m;k;r;s as products of integrals depending
only on one of the variables u and w.

Plugging these products in Ai;j;m;k;r;s ¼ D1i;j;m;k;r;s þ D2i;j;m;k;r;s � 3Bi;j;m;k;r;s, we write an integral expression
of the elements Ai;j;m;k;r;s as sum of products of integrals that can be all of them evaluated using a regular
Gauss integration technique.

4.4. The initial conditions

We have assumed that the density function N0 : n ! N0ðnÞ representing the initial distribution of the
normal vectors to the microcracks per unit volume, per unit of solid angle in the reference configuration is
an element of V � L2ðS2Þ. Let SM ;K be the following symmetric linear combination of even degree spherical
harmonic functions, degree 2M and order K,

M ¼ 0; 1; . . . ;K; l ¼ 0; 1; . . . ; 2M

SM ;KðrÞ ¼
PM�1

m¼0

Pþ2m

k¼�2m
a2m;k q2m;kðrÞ þ

PþK

k¼�K
a2M ;k q2M ;kðrÞ

8<
: ð32Þ

The objective is to determine the expansion coefficients in the finite series (32) that best approximate
N0ðrÞ.

When

a2m;k ¼
Z

R
N0ðrÞq2m;kðrÞdr ð33Þ
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Eq. (32) is the partial sums sequence of

m ¼ 0; 1; . . . ; ; k ¼ 0;�1; . . . ;�2m

N0ðrÞ ¼
P1
m¼0

Pþ2m

k¼�2m
a2m;k q2m;kðrÞ

8<
: ð34Þ

the unique Fourier series of N0ðrÞ with respect to the system ðfr ! q2m;kðrÞg; m ¼ 0; 1; 2; . . . ;
k ¼ 0;�1; . . . ;�2mÞ.
The truncated Fourier series, is among the linear combinations (32), the one that best approximates

N0ðrÞ in the norm k � k2, and in that case, the partial sums sequence converges to N0ðrÞ in L2ðRÞ.
The initial conditions c2m:kð0Þ for Eq. (29) are the coefficients a2m;k defined in Eq. (33), that we will find

approximately.
We have also considered the possibility of using the Fej�eer sums of the partial sums sequence SM ;K of the

Fourier series.

M ¼ 0; 1; . . . ;K; l ¼ 0; 1; . . . ; 2M

SM ;KðrÞ ¼
PM�1

m¼0

Pþ2m

k¼�2m
c2m;kð0Þq2m;kðrÞ þ

PþK

k¼�K
c2M ;kð0Þq2M ;kðrÞ

8<
: ð35Þ

This Fej�eer sums sequence, is the arithmetic means of fSM ;Kg

M ¼ 0; 1; . . . ;K; l ¼ 0; 1; . . . ; 2M

~FFM ;KðrÞ ¼ 1
M2þKþ1

PM
m¼0

PK
k¼0

Sm;kðrÞ

8<
: ð36Þ

and also converges to N0ðrÞ. We can also represent this sequence, as a linear combination of the type (32)
with coefficients

a2m;k ¼ 1

�
� m2 � jkj
M2 þ K þ 1

�
c2m;kð0Þ ð37Þ

These sums are a classical way of smoothing the higher orders Fourier coefficients.

4.5. The approximating Cauchy problem

The system of ordinary differential equations (29)

n ¼ 0; 1; . . . ;M ; l ¼ 0;�1; . . . ;�2n

_cc2n;lðtÞ ¼
P3
i¼1

ovi
oxi

� �
c2n;lðtÞ þ

P3
i;j¼1

ovj
oxi

PM
m¼0

Pk¼2m

k¼�2m
c2m;kðtÞAi;j;m;k;n;l

8<
:

together with the values c2n;lð0Þ of the expansion coefficients of the Fourier series of N0ðrÞ in Q0
M

c2n;lð0Þ ¼
Z

R
N0ðrÞq2n;lðrÞdr

define in Cartesian coordinates, the Cauchy problem determining the evolution of the time-dependent
expansion coefficients c2n;lðtÞ of the trial function F2Mðt; rÞ, approximating the solution Nðt; rÞ to problem
(21).
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5. Examples of application and analysis of results

Assuming an initial microcrack population N0, the code has been tested with three classical examples,
simple traction in the direction of one coordinate axis, the simple shear problem, and a rigid motion, so
verifying the material frame indifference behaviour of our approach.

In these experiments the spatial velocity vector field v has been imposed, supplying the different codes
with the corresponding motions, the initial distribution, and whatever they may require.

In the future, when all these routines act combined in the cracking package of routines, the program will
provide these data.

5.1. Simple traction

Let B be an elementary prismatic block of brittle material (Fig. 1) with edges parallel to the axes of the
Cartesian coordinate system ½X i� on B. We will denote by ½xi�, the coordinate system on the ambient space
R3. If we apply a constant surface traction q along the X 1-axis, the spatial velocity vector field v of the
corresponding motion is represented by,

v ¼
ax1

�max2

�max3

0
@

1
A

where a ¼ q=E is a constant and E and m are the Young modulus and the Poisson ratio respectively.
The gradient and the divergence of the spatial velocity are,

gradv ¼
a 0 0
0 �ma 0
0 0 �ma

0
@

1
A; divX v ¼ að1� 2mÞ

Assuming an initial microcrack population with a uniform distribution of normals of constant density
N0ðnÞ ¼ 2:24 per unit volume, per unit of solid angle of S2, the evolution of the density distribution of
normals of the population due to the deformation of B under this motion, is depicted in Fig. 2a–f.

NðnÞ, the number of microcracks per unit volume, per unit of solid angle of S2 with normal vector
n ¼ ðu;wÞ 2 ½0; 2p� � ½0; p=2� is represented in the vertical axis. The total number of cracks will remain
constant throughout the evolution in the no-nucleation hypothesis.

Fig. 1. Simple traction along the X 1-axis.

J.M. S�aanchez, J.L. Vega Miguel / International Journal of Solids and Structures 39 (2002) 797–817 809



The initial distribution is represented in Fig. 2(a). Each figure represents a picture of the evolution
corresponding to a progressively increasing tensile or conventional strain. We start imposing a tensile strain

Fig. 2. Evolution of a microcracks population under simple traction along X 1.
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of a 20% 11 Fig. 2b, that is gradually raised up to 40% (Fig. 2c), 80% (Fig. 2d), 120% (Fig. 2e) and 160%
(Fig. 2f). 12

The corresponding uniaxial tension T ¼ qe1 along the X 1-axis with unit vector e1 ¼ ð1; 0; 0Þ; ððu;wÞ ¼
fð0; p=2Þ; ðp; p=2ÞgÞ, causes an increment in the number of microcracks with orientation parallel to ð0; p=2Þ
or ðp; p=2Þ, directions of maximum tensile stress.

The closer to this orientation the greater the density, and this number increases keeping the same shape
as the deformation increases (Fig. 2b–f).

5.2. Simple shear problem

Simple shear in the plane X 1X 3 along X 3. The stress tensor of simple shear with slip plane perpendicular
to the X 2-axis and slip direction parallel to the X 3-axis with shearing strain j is

R ¼
0 0 lj
0 0 0
lj 0 0

0
@

1
A

where l ¼ E=2ð1þ mÞ is the Lame’s coefficient.
The deformation x ¼ /ðX ; tÞ is (Fig. 3).

ðx1; x2; x3Þ ¼ ðX 1;X 2;X 3 þ jX 1Þ

The corresponding displacement vector field

v ¼
0
0

jx1

0
@

1
A

Assuming that j is a linear function of t (j ¼ at, where a is a constant), we get the motion and the spatial
velocity

Fig. 3. Deformation under simple shear in the plane X 1X 3 along X 3.

11 Total elongation of the specimen 0.2L.
12 The deformations imposed to the specimen are obviously ideal, a 2% tensile strain of a steel bar would be considered already very

high, these non-realistic deformations far beyond any real behaviour, only intend to test the model and the algorithm.
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ðx1; x2; x3Þ ¼ ðX 1;X 2;X 3 þ atX 1Þ

vðx; tÞ ¼ ð0; 0; ax1Þ

The corresponding gradient and divergence are,

gradv ¼
0 0 0
0 0 0
a 0 0

0
@

1
A; divX v ¼ 0

With an initial microcrack population of constant density of normals N0ðnÞ ¼ 22:45 per unit volume, per
unit of solid angle of S2, the evolution of the population undergoing this motion, is represented in the
following Fig. 4a–f.

Assuming that a > 0, the major principal stress direction is ð1; 0; 1Þ; ððu;wÞ ¼ fð0; p=4Þ; ð2p; p=4ÞgÞ,
corresponding to the major principal stress la, and consequently there is an increase in the number
of microcracks with orientation parallel to the maximum tensile stress. The direction ð0; 1; 0Þ;
ððu;wÞ¼ fðp=2; p=2Þ; ð3p=2; p=2ÞgÞ, corresponds to the intermediate principal stress 0 and ð1; 0;�1Þ;
ððu;wÞ ¼ ðp; p=4ÞÞ, the minor principal stress direction corresponding to the compression �la.

The changes of the number of cracks for these three orientations are a consequence of the hypothesis of
the conservation law (10)––no-nucleation––stable cracks.

5.3. Rigid motion

In order to test the material frame indifference behaviour of our model, we have applied the code to a
rigid deformation, given by the transformation nðxÞ ¼ Qxþ c, where Q is a proper orthogonal matrix and c

is a constant vector.
We have considered a rotation about the X 1-axis with constant angular velocity x.
c ¼ 0 and matrix Q is then

Q ¼
1 0 0
0 cosxt � sinxt
0 sinxt cosxt

0
@

1
A

The spatial velocity vector field v will be given by

v ¼
0 0 0
0 0 �x
0 x 0

0
@

1
A X 1

X 2

X 3

0
@

1
A ¼

0
�xX 3

xX 2

0
@

1
A

The gradient and the divergence of v are,

gradv ¼
0 0 0
0 0 �x
0 x 0

0
@

1
A; divX v ¼ 0

Assuming an initial microcrack population that follows a binormal distribution with mean vector
ðp; p=4Þ and standard deviation ðp=18; p=6Þ (Fig. 5), the convection of the population for a complete ro-
tation about the X 1-axis has been studied.

The different results appear in Fig. 6a–f where the evolution of the population for the intermediate angles
p=3, 2p=3, p, 4p=3, 5p=3, and 2p has been represented, showing clearly that the microcrack population, has
not been affected by the motion.
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6. Conclusions

This paper deals with the analysis of the convection process of non-interacting stable microcracks
embedded in a matrix in the hypothesis of ignoring crack nucleation.

Fig. 4. Microcracks distributions for simple shear in the plane X 1X 3 along X 3.
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One first conclusion of the analysis of the Lie derivative convected rate of the density of orientations of
cracks function, is that the evolution of the microcrack population is here due only to the rotation of the
crack planes as a consequence of the deformation processes of the microcracked solid.

The idea underlying this analysis is that micromechanical study of damage and of continuum mechanics
as a whole can be approached in a computational fashion. In this sense, this paper is considered an im-
portant contribution to a general formulation of a microfracture model for brittle cracking.

Our mathematical approach of the general problem combined with the use of pseudospectral methods to
numerically solve the problem, suggest that the numerical implementation of the model discussed in this
paper, will be essential in the numerical approach of the general model through the tensor product basis of
the Cartesian product of the functional spaces in the microvariables involved in the description of the
microcrack pattern.

The corresponding algorithm will be a set of routines simulating the microcracks behaviour within a high
rate simulation computer program of brittle cracking.

Appendix A. Some computational details

A.1. The general flow of computations

In this section, we outline the role that should play the evolution of the microcracks population, in a
structural dynamics stress analysis code.

The time dependence on the evolution of the crack population equation (E) comes through the stresses in
the present model and so, it is coupled to the stress vs. strain relationship and through it, also to the
conservation laws.

However, many computer codes would treat (E) as uncoupled at each step to the conservation laws
(Zukas, 1992) with the usual technique of changing its coefficients in due manner at the next time step.

A typical high rate simulation code will advance time steps by switching back and forth from a con-
servation laws program (CLP) to subroutines simulating the material behaviour (MBR).

By and large, the CLP obtains from the MBR a discrete version of the stress field rn at a certain time tn
and computes among several quantities an update �nþ1 of the strain that together with some history
variables stored, constitute the main input of the MBR.

These behaviour routines, work in a kind of implicit overall scheme. They need to start up a convenient
guessed update of the chosen field, which is compared at some point with a computed update of that field.
Should both fields agree the update process as a whole is declared finished and, as a result a special update
rnþ1 of the stress field is determined, among other updates, and put into the CLP.

Fig. 5. Initial distribution for the case ‘‘rotation about the X 1-axis’’.
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If these fields do not match, the behaviour routines need to provide a new guess, starting an iteration
process.

Fig. 6. Microcracks distributions for rotations about the X 1-axis. Rotation angles: 60�, 120�, 180�, 240�, 300� and 360�.
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Some of the most important routines in MBR form the CRACKING package. This set of routines pro-
duce at each time step, and each iteration cycle, the crack strain fields, an update of the microcrack density
function Nðt; nÞ, and the crack density or damage tensor (Kachanov, 1987).

In order to learn about the state of damage of our material at time t, we need an update of the density
function that we obtain approximately solving problem (21) using the described algorithm.

Several codes have been written to accomplish this goal. They have been included in the Fortran pro-
gram CAL. The main features of CAL are described in Section A.2.

Although it is quite clear how CAL should be embodied in the general program, this has not been done
yet, and as a consequence, users must specify to CAL the motion of the microcracks population and any
other information inputs required by the different codes.

A.2. Description of the program CAL

The Fortran program CAL updates at each time step of the pure convection evolution process, the
density of microcracks population in the microcracked brittle material.

The code starts reading the elements of matrix A, the constant coefficients of the approximated system
(29), which need to be evaluated only once throughout the whole process using the technique developed in
Section 4.3.

After that, the truncation level of the spherical harmonics series is declared (in detail we fix M, the said
level 2M cannot exceed 10). In a realistic application of this method, the computational cost would
probably require smaller truncation levels.

The next data we feed into the program is the definition of the initial distribution of microcracks. The
code contemplates three different options:

• A microcracks population with a uniform orientation distribution.
• A microcracks population with one prevailing orientation characterised by a bidimensional normal dis-

tribution, which is approximated by a linear combination of spherical harmonics. The Fourier coeffi-
cients of this expansion are evaluated using a Gauss–Legendre numerical integration method.
A 10th order approximation of an initial binormal distribution is represented in Fig. 5.

• To continue with the computation when the input data is a final distribution of microcracks, a result of
previous steps.

Once the knowledge of the initial conditions of the Cauchy problem is completed, the motion of the
body that will produce the evolution under study should be given. In a general simulation program, this
information will be provided by the CLP.

After the motion is specified, the gradient and the divergence of v are evaluated. With this information,
the process of integration of the approximating system (29) starts.

We have equipped our code with two integration routines, an embedded Runge–Kutta method (Calvo
et al., 1990) for non-stiff problem (Hairer et al., 1991) and a variable step size BDF for stiff problem (Hairer
et al., 1981). We decide which one should be used by analysing the R–K step size evolution versus stability
and accuracy, that will show us the degree of stiffness of the system. The time integration of Eq. (29) can be
done as part of the time step integration scheme of the general finite element program. At the end of
each computation, the code graphically displays the microcracks distribution approximation at time t or
after a prescribed number of time steps. The corresponding illustration represents for a particle X a picture
(at time t) of the density (number of cracks per unit volume per unit of solid angle) of the distribution in
orientation of the population. It also prints out the time evolution of several of the most representative
quantities in the microcracks distribution. All the details related to these routines are given in Vega Miguel
(1996).
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