INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 39 (2002) 797-817

Computational micromechanics model for the convection of a
cracks population in a brittle material

J.M. Sanchez *, J.L. Vega Miguel

ETS Ingenieros Navales, Universidad Politécnica de Madrid, Avda. del Arco de la Victoria sin, 28040 Madrid, Spain
Received 24 June 1999; received in revised form 23 July 2001

Abstract

We stated in Sanchez et al. (Proc. 15th IMACS World Congress, Vol. 5, 1997, p. 513), the objective rate law
governing the general evolution, nucleation, growth and convection, of a diluted 3D population of arbitrarily oriented,
penny-shaped, non-interacting stable microcracks that is dragged along the flow of a regular motion of a simple
continuous body of brittle material.

This requires the prior analysis of the convection process in the hypothesis of ignoring crack nucleation. It follows
that the evolution of the microcrack population is here due only to the rotation of the crack planes as a consequence of
the deformation processes of the microcracked brittle solid.

The determinant role of this case in the general evolution problem, is also so in its numerical treatment.

In this paper, use is made of the Bubnov—Galerkin spectral method with respect to the angular variable defining the
orientation of a crack to numerically solve the mathematical model of the pure convection of microcracks in the no-
nucleation hypothesis.

The paper is completed with three applications. The corresponding microcracks evolutions have been graphically
displayed showing a behaviour that agrees with the expected.

Indications about the computer codes implementing the numerical algorithm are included in an appendix. © 2002
Elsevier Science Ltd. All rights reserved.

Keywords: Microcrack evolution; Brittle material; Computational micromechanics model; Galerkin method (method of spherical
harmonics); Pseudospectral method

1. Introduction

Our objective is the analysis concerning the convection process of non-interacting stable microcracks
embedded in a matrix in the hypothesis of ignoring crack nucleation.

In a simple body B of brittle material a diluted 3D population of penny-shaped microcracks will be
dragged along the flow of a regular motion t — ¢,. We assume implicitly that cracks move without getting
out of their planes so that the orientation of an individual crack following the material movement is given
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by an inextensible vector, normal to its plane not necessarily a unit. The non-interacting microcracks
approximation will be adopted.

We will also assume the no-nucleation no-growth hypothesis. In this hypothesis the radius of each
penny-shaped microcrack remains constant along the motion.

We prove that the evolution of the microcrack population is here due to the rotation of the crack planes
as a consequence of the deformation processes of the microcracked solid.

We consider the analysis of this case as an indispensable step towards more complex models.

Our point of view considers a microspace g attached to each point of the brittle microcracked solid B.
This microspace is in general, a Cartesian product of submanifolds of R in which the internal parameters
needed to describe the microcrack population evolution vary.

The evolution process is then described in terms of the new body B X . A motion of B X p is a curve
(t — B, X p) defined by an evolution operator that extends the flow of our motion by joining as a second
operator a smooth flow describing the evolution of the internal parameters. Therefore, the Lie differenti-
ation would be available for these generalised flows on B, x @ with its objectivity properties including even
the “diffeomorphism-like” spatial covariance objectivity (Simo, 1988).

In the general case, the extra microscopic variables needed to describe the microcrack pattern (Krajci-
novic and Lemaitre, 1987) would be the radius, or the area, of the crack that defines the shape of each penny-
shaped crack in the elastic matrix, the material coordinates of the crack center defining the position of each
defect, and the normal to the crack plane defining its orientation. Our approach allows us to consider the
evolution of the microspace as a “product” of evolution operators depending on the microcrack variables.

Once the general evolution laws are stated, and the mathematical model is correctly posed, a multidi-
mensional pseudospectral numerical method blending different approximations in each of the submanifolds
in the microspace (Canuto et al., 1988) can be used to approximately solve the problem respecting the
conceived structure. The change of orientation of a crack is not influenced by the other microvariables
consequently, its contribution to the general evolution of the microcrack population can be studied sep-
arately. The numerical implementation of this model, problem that we solve in this paper, will be essential
in the numerical solution of the general model which will be a finite expansion in terms of the tensor
product basis of the functional spaces involved in the pseudospectral method.

2. Microcrack population evolution law
2.1. General considerations and notation

We consider a regular motion ¢ — ¢, of a simple continuous body of brittle material B.

The collection of orientation preserving diffeomorphisms ¢, , = ¢, o ¢, ' mapping ¢(B) = B, onto ¢,(B) =
B, is the time-dependent flow, the evolution operator, of the spatial velocity vector field v of our motion.

Both the time-independent configuration of the body B and the present time configuration By, will be
reference configurations.

“Determinism” is expressed by the Chapman-Kolmogorov law (Marsden and Hughes, 1983)
¢ 0 ¢, = ¢, and ¢, = identity for all 7, ¢, s € R for which the flow ¢_ is defined.

We write x = ¢, (X, ), so that points in B, and also in B, will be denoted by capital letters. Coordinate
systems on the ambient space R® are denoted by {x'} while those on B or B, are denoted by {X’}. The
corresponding spatial and material local bases in the tangent and the cotangent spaces are denoted by
{e;(x)}, {dx'}, {E;(X)} and {dX'} respectively. The usual inner product in R* will be denoted by (e]e).

@, represents the deformation gradient of the flow. For each X € B, @,,(X) is the two-point tensor
Ty ¢, ,, the linear isomorphism from 7y B, to T,B, tangent to the flow at X. Its matrix with respect to the local
bases {E;(X)} and {e;(x)} is
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A Gy
(@) = o (1)

A vector a engraved on the body at the point X in By, is transformed within the first order into the vector
®,,(a) engraved on the body at the point x = ¢, (X) in B, at time ¢. ! Thusat the microcrack scale the
general flow ¢,, induces a convection whose evolution operator is @,,. > Thislinear local flow generates
other evolution linear local operators, tDIS the transposed of the deformation gradient and the so-called
spatial deformation gradients, @, = &, and QS;,T = (9, SI)T that also satisfy the Chapman-Kolmogorov
law. T 7

In particular @, = (Ed);]) : T¢By — TB,, with matrix

(27@) = o)

o
with respect to the dual local bases, {dX’} and {dx'} plays an important role in this paper.

2.2. Analysis of deformation

As was mentioned before, the orientation of an individual crack following the material movement is
given by a vector n, normal to its plane not necessarily a unit. This vector is inextensible throughout the
evolution process because the orientation of the microcrack does not depend on the length of n. Functions
depending on the orientation must be zero degree homogeneous. Consequently they only need to be defined
on S2, the unit sphere of R*, in which case they must have the same value for any unit vector and its op-
posite, vectors defining the same orientation. > To allow the extra microscopic degrees of freedom necessary
to define the orientation of the crack we modify the containing space R* by “adding” the microspace S>.
The modified space is then R* x S? and the corresponding new body B x S2.

! Indeed, the material vector a = XP € TxR® is flow-dragged to ¢, (a) = ¢,s(P) — ¢,,(X). The components of this convected vector
can be described by a Taylor expansion

(h1,8) = §u(P) = b, (X) = D (@) (X)a + -

K

2 Using the chain rule in ¢ 0 by = ¢, we have for all X € B,

Ty, x)Pe 0 Tx by = Tx o
that is

(bz-t((bm (X)) © (Dt,S(X) = ‘DTJ(X)

so that @, 0 @, = &, and &,, = id for all 7, ¢, s € R for which the flow @, is defined.

3 Any continuous function f on §2, has a continuous extension f to R> —0 = R? defined by f(n) = f(n/||n||) which is positively
homogeneous of degree zero.

Conversely, any continuous function g on R? positively homogeneous of degree zero is of the form g = f where its generator fis the
restriction g, of g to the unit sphere S.

When g is zero degree homogeneous, its generator f must satisfy for every n € S2, the property f(n) = f(—n), therefore in order to
define g, it suffices to give the values f(n) of its generator on the subset 4 of S? described in Cartesian coordinates by
A4=(1,0,00UD' NH,y US?> N Hy, where H,;" represents the half space x; > 0 (i = 2,3), and D' is the unit disk in the plane H; = 0.

Thereafter, this function is extended to S? by writing f(n) = f(—n), for every n in S” that is not in 4, and in a final step to R}
recalling that the values at n and (n/||n||) € S?> must be equal.

The functions depending on the orientation are zero degree homogeneous in R? and assuming adequate properties of differen-
tiability, they will satisfy the Eulers theorem that will still hold when their generators on S> are considered. This fact will be used in
some of the coordinates computations later on. In general, we shall not distinguish between f and f.
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A state of our physical system at time # is a couple (x,n,) € B, x S2, defined by the spatial point x and a
normal unit vector n, to the plane of the crack. Let ¢, be the evolution operator (X,n,) — (x,n,) that maps
a state at time s to what the state would be at time ¢ after time 7 —s has elapsed. ¢,, = (¢, ¥,,) :
B, x §* — B, x §* is made up with the flow ¢, of v and the flow ,; of w, the time-dependent vector field
on S? defining the rate of change in orientations of the microcrack population convected by the flow. By
studying the motion of an individual crack that follows the material movement, we define the evolution
operator y, ; that relates, for a fixed particle X € B, and any size of crack opening, the unit normal n, to the
plane X of a microcrack at time s, to n, the unit normal, to the plane X, = @, (X) - X, that contains the
microcrack at time ¢ when is convected by the material from B, to B, without opening new surface area.

n, can be described in terms of the one form o, such that «; A g = w, where @ and u are the volume
elements defining the canonical orientation in R* and S? respectively (see Chapter 2, Box 2.1 of Marsden
and Hughes (1983)). We say that o is the unit normal to 2. The same unit normal thought of as a vector ny,
satisfies that p is the interior product u = i, @, of n; and .

If n, is described in terms of o, n, will be described in terms of o, = (¢, ), %, the push-forward of o,.

By definition o, = ((j);;)*ocs so that

w(@)(ea) = 2 (0 () (T ) () = (6 @) (2 () (e2)
with o
%@@h%%ngﬁgim

and

(%@=ZMWM@ﬁ%¥«)

A
thus we have

0(x) = @1 (@) (20 4, ) (4)

Going back to ny with the adequate isomorphisms, we see that <D;T - n, defines a normal vector to X, not
necessarily a unit.
Considering that n, is a unit, we got

_ (D;sT (n,) (1)
[EACNIl
Once the evolution operator ¥, is defined, we need to find the unique time-dependent field of contra-

variant vectors w over S2, spatial velocity vector field of our motion. * w,(n) is the tangent vector at
¥, (n;) = n; to the curve (t — ¥, (n,)), and is defined for all n in S by

d| o./n

d
wim) =2 [ )] =+ lW] = )

n, = ‘//m (ns)

4 Usually what is given is the time-varying vector field w, defining the law of motion and the corresponding evolution operator i, , is
defined by

{ 5 () = w, (¥, (m))
Y, (m)=n
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Introducing the auxiliary functions g : x — ||x|| ™' = (x|x)""/%, > forx # 0, and £ () = @;STnS we can write

@, I'n,
—— = f(t)(g o f)(2)
|, g
Recalling that
, 1
gxXu=— ™ — (x[u)
and
o do ]
f(t) - dt ng
we get
d Pt | _ (5o N0 + £ )0 = F0Ee O ——— (FO1F0)
. goj)l g0, = go T3 !
(1@, ]| [EGIR
so that
_ do, T
(D7T ﬂ (D ny ny
%_ d n | diTns _( ar )‘Pans 3)
dr o ol | 1@, n 1@, n,|*
The material derivative of @, is (Malvern, 1969)
do,,
dttA = gradv- @,

where gradv represents the gradient in configuration B, of the spatial velocity field.
We also have

do!
_dt“ =9 - (gradv)" (4)
and °
ch;_T .
T~ (grady)” @

5 From the evident identity

P/ (X) o &, (x) = idr;s,
we get
do,” do;
— ) +—

0= LX) 0= (1) + = (1) 0 ()

1S

where 0 denotes the zero operator.
Suppressing the arguments and solving for d®], /ds

T ~T
dof, o ol

dr CREE TR

and plugging it in the LHS of Eq. (4), we get

do”
dr

—T
zs

—(gradv)" -
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so that

dn, (gradv)’ - @ T ((grad v’ ‘15,_,3) n.gldi,fé,Tns)

—_— = — g n
d |o | |® o’ e

t,s

Putting 7 = s and remembering that &, = idr:p, and n, =n,, we get finally the expression defining the
spatial velocity vector field of our motion on S2.

w(n) = ((gradv)T -n|n>n — (gradv)" -n (5)

Also on R? when the normal vector n is not a unit, but it is inextensible we get.

that we can write
w(n) = 4n — (gradv)" -n (7

with

A is a real zero degree homogeneous function of n so that (n|grad,4) = 0 (Euler’s theorem).

In both cases, (w(n)|n) = 0, expressing that n being inextensible, remains orthogonal to its velocity,
relation that will hold as long as ||n|| is constant along the motion.

Once the vector field (v,w) : B, X §* — T, (R x %) = (R?), x T,,S? tangent at time ¢ to the flow ¢, is
defined, the push-forward and pull-back operators induced by ¢, , or any of its components ¢, and v,
can be defined in the usual way; and as a consequence, we can find Lie derivatives of smooth time changing
tensor fields along these flows.

2.3. Mathematical description of the microcrack population

We postulate the existence of a time-dependent real function N(x,,n), defined at time ¢ on B, x S?,
representing for any size of microcracks, the time evolution of the density of the distribution of the normal
vectors to the microcracks per unit volume, per unit of solid angle of S?. Physically, N (x, #,n) is interpreted
as the density (number) of microcracks per unit volume at x, per unit solid angle at n at time ¢.

For a fixed spatial point x, N(x,¢,n) is a comodular scalar, the unique component of a time-dependent
two-exterior differential form f8, on S? and must satisfy

N(x,t,n) = N(x, 1, —n) (8)

As we have mentioned before, N can be extended to R® maintaining the zero degree homogeneity
property by writing for n # 0

N(x,t,n) N( - )
X, Ly = Xy by =
[[n]
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therefore, assuming that N is C' in R?, the Euler’s theorem holds. 6

(n|grad,N) =0 )

Equality that is also true when n is a unit vector.
In the sequel, n will denote either a unit vector, or an inextensible vector, not necessarily a unit. ’

2.4. Objective convected rate of the density of normals distribution

To estimate the change in N(x,#,n) when we convect n, according to the flow y,, we state in the no-
nucleation hypothesis the conservation law

W/
- =0 10
dr Jy, ) g (10)

where P is any nice open set of 2 (see e.g. Marsden and Hughes (1983) and Abraham et al. (1988))
Using the generalised transport theorem

v ]
- ﬁ = gw,ﬁ (1 1)
dt Jy.m" Sy t
we have,
Ly =0 (12)
Vis(P)

for any P, condition that we will express in local differential form as
gwlﬁz =0 (13)

after this localisation process we get (Sdnchez et al., 1997) ®

© Considerations of N being a distribution not necessarily differentiable in the usual way do not affect the problem.
We can use the following characterisation of a homogeneous distribution. N € D'(R") is homogeneous of degree p € R, iff

"~ ON(x,t,n)
— ' 2 —pN o,
;X. o PN (x,t,n)

N being a zero degree homogeneous distribution should satisfy Eq. (9) in the distributional sense.
7

[
gw,ﬂr = g + (Lw, ﬂr)

where L is the autonomous Lie derivative (Marsden and Hughes, 1983).

8 Recalling the definition of divergence of a vector field V on an orientable manifold X with volume form g, as the comodular scalar
such that Ly (u) = (div, V)u and the equality

v(eAP) =Ly(a) A+ oA Ly(p)
we have
Ly B, = Lw,(Npt) = (L, N)pt + NLy,pt = (Ly, Ny + Ndiv, w,) p = ((grad, N|w,) + Ndiv, w,)u
Using the Hodge star operator we get
(Lw,B)" = grad, N|w, + Ndiv, w,
In our case (non-autonomous Lie derivative)
ON

N . ON .
(L) =+ (Ly ) =5+ (rad, Nlw,) + Ndiv, w,
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(ZwB) = aa—]j + (w;|grad, N) + Ndiv,w, = 0

Going back to the expression (7) where we had defined w,(n), we see that
div, w, = div, (4n) — div, [(gradx v n]
and °
div, (4n) = Adiv,n + (n|grad, 4) = Adiv,n = 34div, [(gradx v n} = (div, v)
thus we have
div,w, = 34 — (div,v)
We also have
(w,|grad, N) = (4n|grad, N) — ((grad,v) ‘n|grad, N) = —((grad, v) 'n|grad, V)
plugging the LHS of Eqgs. (15) and (16) into Eq. (14) gives us the equation.

(ZwB) = aa—]j - ((gradxv)Tn|graan) + ”3% (n|(gradxv)Tn) — Ndiv,v=20
n

3. Formulation of the model

(14)

We assume that for each (x,¢), N : n — N(¢,x,n) with n € 5%, is an element of the Hilbert space L*(S?),

with the usual inner product (e, e) and associated norm || e ||,.

N is the trace over S? of an element also denoted N, that belongs to H'!(R?). More precisely, the generator
of N, varies in the subspace V of L?(S?) consisting of all functions satisfying the homogeneity condition

N(t,x,n) = N(¢,x, —n).

The convected time rate equation (14), defines a homogeneous linear convection PDE (E) with con-
vection velocity w(x, z,n), x € B;, ¢ > 0 and n € S, that with the zero degree homogeneity condition, and the

corresponding initial condition, defines the evolution problem (18)

N+ (w/|grad,N) + Ndiv,w, =0 (E)
N(¢,x,m) = N(t,x,—n) (zero degree condition)
No(x,r,m) is known

Introducing the linear (spatial) differential operator

L(x,t,n) = ((gradxv)Tn|gradn) - lﬁ (n|(gradxv)Tn) - divxvl ld)y

® Recalling that 4 is a real zero degree homogeneous function of n so that (n|grad, 4) = 0.
Also from

ov
m "

> T n =
(grad,v)" -n e

ma

a

we have

4 - B o Zupm) _ ov,, on" O o ov,,

ma
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where Id)y is the identity operator of L?(S?) restricted to ¥, Eq. (17) can be written as

667];7 (t,x,m) = L(x,¢,n)N(z,x,n) (20)

Clearly D(L) the domain of L, is contained in L?(S?).
Thus problem (18) is equivalent to the Cauchy problem

%—];’:L(N) with NeV (21)
Ny is known

where Ny : n — Ny(n) is in ¥ and n varies in S°.

4. Numerical implementation of the model
4.1. Method of spherical harmonics

We will use the Bubnov—Galerkin weighted residual method to solve approximately problem (21) by
reducing it to a Cauchy problem for a system of ordinary differential equations.
The geometry of the problem suggest to choose the spherical harmonic functions

{gmi}; m=0,1,2,...5 k=0,£1,£2,...,+m)

an orthonormal complete system on the unit sphere S? equipped with the usual inner product and norm
(Neri, 1971), as possible basis functions.

After taking the classical spherical coordinates chart in S2, only the angular coordinates o = (¢,
) € X =10,27] x [0, 7] intervene in the transformed equation. ' The approximation F, (¢, ) with M € N
to the solution N(¢,g) is sought in Oy the linear subspace of L?(X) spanned by the spherical harmonics of
degree up to M.

M +m

FM(tv 0) = Z z Crn,k(t)qm,k(a) (22)

m=0 k=-—m

The basis functions are selected so that the trial functions, satisfy the homogeneity condition that is
expressed in spherical coordinates by

FM(t’n+(p,n_lp):FM(t7(p7l//)

turning into

FM(t7TC+ O, T — lﬂ) = (_I)MFM(t7 (/)7[//)
when plugged in Eq. (22).

This condition is fulfilled by the family ({gans}; m =0,1,2,...; k=0,+£1,...,+2m) of the even degree
spherical harmonic functions. This family is an orthonormal complete system on V, consequently our
approximating space will be O}, the subspace of 0,y spanned by the family of the even degree spherical
harmonic functions up to the truncation level 2M, and the trial functions will be defined by the truncated
series

10 The system {g,} m=0,1,2,...;k=0,%+1,42,...,4m is an orthonormal complete set on L?(X), so that
(qmi(0),4r5(0)) = . Gni(0)qrs(0) Ao = 0,01

ge.
where do = siny dyyd¢ is the unit sphere measure in spherical coordinates.
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M +2m

Fouy(t,0) = Z Z CZnLk(t)qu,k(O') (23)

m=0 k=-2m

4.2. The approximating system of ODE

The (2M + 1)(M + 1) expansion coefficients ¢y, are determined from the condition expressing in L*(X)
the orthogonality of the residual

OFy(t,o
Rt ) = D) 11 ) (24)
and each of the (2M + 1)(M + 1) basis functions ¢,,; with n =0,1,2,...;and / =0,%1,...,+2n
OFy(t, o
®alfit,0))a2ns(@) = [ (AT 100) Jauas )0 =0 (25)
[

Taking into consideration the orthonormal properties of the spherical harmonics functions and the ex-
pression in Cartesian coordinates of the operator L, we get the set of ordinary differential equations

n=0,1,..., M [=0,%1,...,£2n
. . ov; v; M (2 0qamk(0)
Cony(t) = Zaxi Cony (1) Z Z > comp(t fz on; goni(0)do

i=1 i,j=1 " m=0 \k=—2m (26)
3 ov, M k=2m
3Y B (5 nal0) [ B tons )0 da)
ij=1 m=0 \k=-2m
Denoting
Oqomi(a
Di,j,nLk,rJ :/nj%a—mqu‘,s(a)da (27)
b n;
Bi,jm,k,r,s - H ||2 q2mk( )qu,S(O-) dO— (28)
and

Ai,j.,m‘k,r,s = DiL/'Jn.,k‘r.,s - 3Bi‘j‘m,k.,r,s
the system of ODE defining the expansion coefficients can be written in the more compact way,
n=01,..., M [1=0,%1,...,+£2n
. ovs M k=2m (29)
c2n,l(t) = Z Can( ) + Z = Z Z chk( ) ijmkn,l

i=1 ij=1 " m=0k=—2m

4.3. The coefficients A; j s

The integral expression

Oqomi(c n;n
Ai,jtm,k,r,x - / nj qza ’kA( ) - 3 /2q2m k( ) 42m(0) dU (30)
z n; [[n]

defining the coefficients 4; ;. depends only upon the basis functions and is not time-dependent.
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In order to evaluate these coefficients, we begin writing

) _ ) a_(P+ 02k (0) % (31)
ani aqo ani @l// ani

then we split D; ., as the sum of the two integrals

anmk(o) a(P
Dli'm rs — iq42r.s 7_(1
Jmkr, /’Z‘n]q2 » (O-) a(p ani g

aq2mk(o) alﬁ
2. = i92rs(0) ——— =2 -
D2, j s /anqzm(o-) oll/ on; do

Using closed forms of the spherical harmonics ¢, in terms of ¢ and y (Korn and Korn, 1961) and the
following expressions of the components of n in spherical coordinates

n; = ||n||(;1 cos @ + ;2 8in ¢ + 0;3)((0;1 + d;2) sinyy + 9,3 cos )

(i=1,2,3), we find expressions of each one of the four partial derivatives in the RHS of Eq. (31) as a
product of two factors depending each one of them only on one of the variables ¢ and .

This factorisation is particularly adequate for the evaluation process.

In particular we get

0 1 .
a_:f = _W[_ ;1 8in @ + 9,5 cos ¢
and
Il 1 . .
Foviate Tal (6,1€08 ¢ + Sipsin @ + 0;3)((di1 + i2) cosyy — J;3sin )

With all this, we obtain expressions of D1, xs» D2 jmirs and B; ;s as products of integrals depending
only on one of the variables ¢ and .

Plugging these products in 4; jus,s = D1ijmprs +D2ijmirs — 3Bijmrrs, WE Write an integral expression
of the elements 4, ., as sum of products of integrals that can be all of them evaluated using a regular
Gauss integration technique.

4.4. The initial conditions

We have assumed that the density function Ny : n — Ny(n) representing the initial distribution of the
normal vectors to the microcracks per unit volume, per unit of solid angle in the reference configuration is
an element of ¥ C L*(5?). Let Sy« be the following symmetric linear combination of even degree spherical
harmonic functions, degree 2M and order K,

M=0,1,....K; 1=0,1,....2M

M-1 +2m +K (32)
Sux(0) =2 > mpqomi(0) + Y i gami(0)
m=0 k=—2m k=—K
The objective is to determine the expansion coefficients in the finite series (32) that best approximate
No(O').
When

Ao = /ZNO(U)qu,k(G)dJ (33)
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Eq. (32) is the partial sums sequence of

m=01,...: k=041, .. +2m
oo +2m 34
No(0) = > > @omiqomi(0) (34)
m=0k=—2m

the unique Fourier series of Ny(¢) with respect to the system ({6 — quui(0)}; m=0,1,2,..;
k=0,%1,...,42m).

The truncated Fourier series, is among the linear combinations (32), the one that best approximates
Np(0) in the norm || e ||,, and in that case, the partial sums sequence converges to Ny(o) in L*(X).

The initial conditions ¢, ;(0) for Eq. (29) are the coefficients a,,,; defined in Eq. (33), that we will find
approximately.

We have also considered the possibility of using the Fejér sums of the partial sums sequence Sy, x of the
Fourier series.

M=0,1,....K; 1=0,1,....2M

SMJ((O-) = MX;:; k:f:: sz,k(O)Q2m,k(G) + k:Zi:{KC?M,k (0)92M,k(0) (35)

This Fejer sums sequence, is the arithmetic means of {Sy x}
M=0,1,...,K; 1=0,1,....2M
. o MK (36)
FM,K(O') = WKLl ;)I%Sm,k(o')

and also converges to Ny(o). We can also represent this sequence, as a linear combination of the type (32)
with coefficients

m- — |k
Ao = (1 WK'L) Comi(0) (37)

These sums are a classical way of smoothing the higher orders Fourier coefficients.

4.5. The approximating Cauchy problem

The system of ordinary differential equations (29)
n=0,1,....M; 1=0,%1,...,+2n
. ov M k=2m
i) = (z e+ 5% 35 s Oigmi
i=1

i,j=1 m=0k=—2m

together with the values ¢,,,(0) of the expansion coefficients of the Fourier series of Ny(o) in Q),

cZn,l(O) = /ENO(O-)anJ(O-) do

define in Cartesian coordinates, the Cauchy problem determining the evolution of the time-dependent
expansion coefficients ¢y, ,(¢) of the trial function F (¢, o), approximating the solution N(z,¢) to problem

Q1).
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5. Examples of application and analysis of results

Assuming an initial microcrack population Ny, the code has been tested with three classical examples,
simple traction in the direction of one coordinate axis, the simple shear problem, and a rigid motion, so
verifying the material frame indifference behaviour of our approach.

In these experiments the spatial velocity vector field v has been imposed, supplying the different codes
with the corresponding motions, the initial distribution, and whatever they may require.

In the future, when all these routines act combined in the cracking package of routines, the program will
provide these data.

5.1. Simple traction

Let B be an elementary prismatic block of brittle material (Fig. 1) with edges parallel to the axes of the
Cartesian coordinate system [X] on B. We will denote by [x], the coordinate system on the ambient space
R3. If we apply a constant surface traction ¢ along the X'-axis, the spatial velocity vector field v of the
corresponding motion is represented by,

O(xl

v= | —vax’
—vour®
where « = ¢/E is a constant and £ and v are the Young modulus and the Poisson ratio respectively.
The gradient and the divergence of the spatial velocity are,

o 0 0
gradv=[0 —va 0 |; divyv =oa(l —2v)
0 0 —v

Assuming an initial microcrack population with a uniform distribution of normals of constant density
No(n) = 2.24 per unit volume, per unit of solid angle of S?, the evolution of the density distribution of
normals of the population due to the deformation of B under this motion, is depicted in Fig. 2a—f.

N(n), the number of microcracks per unit volume, per unit of solid angle of $* with normal vector
n=(p,¥) €[0,2n] x [0,7/2] is represented in the vertical axis. The total number of cracks will remain
constant throughout the evolution in the no-nucleation hypothesis.

111111111
1

i

Fig. 1. Simple traction along the X!-axis.
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a) V=(aX', -anX’, anX’)
X'=2.24, j=0° ,y=0°, cyc.=1, t=0.00E+00, Dt=0.00E+00

b) V=(eX', -anX’, anX’)
X'=4.39, ¢=0° ,y=90°, cyc.=27, t=2.01E-04, At=1.25E-05

) v=(aX', -anX’, anX’)
X’=8.70, p=0° ,y=90°, cyc.=38, t=4.08E-04, At=256E-05

29.88

d) V=(aX', -anX’, anX’)
X°=29.87, 0=0° ,y=90°, cyc.=48, t=7.93E-04, At=4.83E-05

100.71

Cracks densiy

2n

e) V=(uX', -anX’, anX’)
X’=100.70, p=0° ,y=90°, cyc.=55, t=1.21E-03, At=7.31E-05

254.65

Gracks density

E

2

) V=(aX', -anX’, anX’)
X’=254.63, ¢=0° ,y=90°, cyc.=61, t=1.59E-03, At=7.07E-05

Fig. 2. Evolution of a microcracks population under simple traction along X'.

The initial distribution is represented in Fig. 2(a). Each figure represents a picture of the evolution
corresponding to a progressively increasing tensile or conventional strain. We start imposing a tensile strain
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’ /,
’
’
! ’
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1 1 7 /7
g ;
’ ’
’ : ‘ /
7 ’ ’
’ ! 7 ’
9 [ J
I~ | 7 7
’ [ ’
tan 9 =K / (4 /,
’ 1/ /
L .
[0,0,Xs) X

Fig. 3. Deformation under simple shear in the plane X'X? along X°.

of a 20% 1‘; Fig. 2b, that is gradually raised up to 40% (Fig. 2c), 80% (Fig. 2d), 120% (Fig. 2e) and 160%
(Fig. 29).

The corresponding uniaxial tension T = ge; along the X'-axis with unit vector e; = (1,0,0); ((¢,¥) =
{(0,7/2),(m,n/2)}), causes an increment in the number of microcracks with orientation parallel to (0, 7/2)
or (m,m/2), directions of maximum tensile stress.

The closer to this orientation the greater the density, and this number increases keeping the same shape
as the deformation increases (Fig. 2b—f).

5.2. Simple shear problem

Simple shear in the plane X' X3 along X>. The stress tensor of simple shear with slip plane perpendicular
to the X?-axis and slip direction parallel to the X*-axis with shearing strain x is

0 0 ux
=10 0 0
ux 0 0

where u = E/2(1 + v) is the Lame’s coefficient.
The deformation x = ¢(X,¢) is (Fig. 3).

(' %2 = (XL X2 X 4 kX!
The corresponding displacement vector field

0

Assuming that « is a linear function of 7 (x = o, where o is a constant), we get the motion and the spatial
velocity

' Total elongation of the specimen 0.2L.
12 The deformations imposed to the specimen are obviously ideal, a 2% tensile strain of a steel bar would be considered already very
high, these non-realistic deformations far beyond any real behaviour, only intend to test the model and the algorithm.
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(¥ ) = (XL X2 X2 4 X

v(x,7) = (0,0, ox")

The corresponding gradient and divergence are,

0 0 0
gradv={[0 0 0 ]; divyv=0
o 0 0

With an initial microcrack population of constant density of normals Ny(n) = 22.45 per unit volume, per
unit of solid angle of S?, the evolution of the population undergoing this motion, is represented in the
following Fig. 4a—f.

Assuming that « > 0, the major principal stress direction is (1,0,1); ((¢,¥) = {(0,7n/4), (2=, n/4)}),
corresponding to the major principal stress po, and consequently there is an increase in the number
of microcracks with orientation parallel to the maximum tensile stress. The direction (0,1,0);
((p,¥)={(n/2,7/2),(3n/2,m/2)}), corresponds to the intermediate principal stress 0 and (1,0,—1);
((@,¥) = (n,7/4)), the minor principal stress direction corresponding to the compression — .

The changes of the number of cracks for these three orientations are a consequence of the hypothesis of
the conservation law (10)—no-nucleation—stable cracks.

5.3. Rigid motion

In order to test the material frame indifference behaviour of our model, we have applied the code to a
rigid deformation, given by the transformation &(x) = Ox + ¢, where Q is a proper orthogonal matrix and ¢
is a constant vector.

We have considered a rotation about the X'-axis with constant angular velocity .

¢ = 0 and matrix Q is then

1 0 0
O0=10 coswt —sinwt
0 sinwt coswt

The spatial velocity vector field v will be given by

0 0 O X! 0
v=[(0 0 —-o X2 | = —X?
00w 0 X3 wX?

The gradient and the divergence of v are,

0 0 O
gradv=10 0 —o |; divyv=0
0 o O

Assuming an initial microcrack population that follows a binormal distribution with mean vector
(n,m/4) and standard deviation (n/18,7/6) (Fig. 5), the convection of the population for a complete ro-
tation about the X'-axis has been studied.

The different results appear in Fig. 6a—f where the evolution of the population for the intermediate angles
n/3,2n/3, m, 4n/3, 57/3, and 27 has been represented, showing clearly that the microcrack population, has
not been affected by the motion.
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This paper deals with the analysis of the convection process of non
embedded in a matrix in the hypothesis of ignoring crack nucleation.

6. Conclusions
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z
H
3
8
o

Fig. 5. Initial distribution for the case “rotation about the X'-axis”.

One first conclusion of the analysis of the Lie derivative convected rate of the density of orientations of
cracks function, is that the evolution of the microcrack population is here due only to the rotation of the
crack planes as a consequence of the deformation processes of the microcracked solid.

The idea underlying this analysis is that micromechanical study of damage and of continuum mechanics
as a whole can be approached in a computational fashion. In this sense, this paper is considered an im-
portant contribution to a general formulation of a microfracture model for brittle cracking.

Our mathematical approach of the general problem combined with the use of pseudospectral methods to
numerically solve the problem, suggest that the numerical implementation of the model discussed in this
paper, will be essential in the numerical approach of the general model through the tensor product basis of
the Cartesian product of the functional spaces in the microvariables involved in the description of the
microcrack pattern.

The corresponding algorithm will be a set of routines simulating the microcracks behaviour within a high
rate simulation computer program of brittle cracking.

Appendix A. Some computational details
A.1. The general flow of computations

In this section, we outline the role that should play the evolution of the microcracks population, in a
structural dynamics stress analysis code.

The time dependence on the evolution of the crack population equation (E) comes through the stresses in
the present model and so, it is coupled to the stress vs. strain relationship and through it, also to the
conservation laws.

However, many computer codes would treat (E) as uncoupled at each step to the conservation laws
(Zukas, 1992) with the usual technique of changing its coefficients in due manner at the next time step.

A typical high rate simulation code will advance time steps by switching back and forth from a con-
servation laws program (CLP) to subroutines simulating the material behaviour (MBR).

By and large, the CLP obtains from the MBR a discrete version of the stress field ¢, at a certain time ¢,
and computes among several quantities an update ¢,,.; of the strain that together with some history
variables stored, constitute the main input of the MBR.

These behaviour routines, work in a kind of implicit overall scheme. They need to start up a convenient
guessed update of the chosen field, which is compared at some point with a computed update of that field.
Should both fields agree the update process as a whole is declared finished and, as a result a special update
0,41 of the stress field is determined, among other updates, and put into the CLP.
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Some of the most important routines in MBR form the cRACKING package. This set of routines pro-
duce at each time step, and each iteration cycle, the crack strain fields, an update of the microcrack density
function N(¢,n), and the crack density or damage tensor (Kachanov, 1987).

In order to learn about the state of damage of our material at time ¢, we need an update of the density
function that we obtain approximately solving problem (21) using the described algorithm.

Several codes have been written to accomplish this goal. They have been included in the Fortran pro-
gram CAL. The main features of CAL are described in Section A.2.

Although it is quite clear how CAL should be embodied in the general program, this has not been done
yet, and as a consequence, users must specify to CAL the motion of the microcracks population and any
other information inputs required by the different codes.

A.2. Description of the program CAL

The Fortran program CAL updates at each time step of the pure convection evolution process, the
density of microcracks population in the microcracked brittle material.

The code starts reading the elements of matrix 4, the constant coefficients of the approximated system
(29), which need to be evaluated only once throughout the whole process using the technique developed in
Section 4.3.

After that, the truncation level of the spherical harmonics series is declared (in detail we fix M, the said
level 2M cannot exceed 10). In a realistic application of this method, the computational cost would
probably require smaller truncation levels.

The next data we feed into the program is the definition of the initial distribution of microcracks. The
code contemplates three different options:

e A microcracks population with a uniform orientation distribution.

e A microcracks population with one prevailing orientation characterised by a bidimensional normal dis-
tribution, which is approximated by a linear combination of spherical harmonics. The Fourier coeffi-
cients of this expansion are evaluated using a Gauss—Legendre numerical integration method.

A 10th order approximation of an initial binormal distribution is represented in Fig. 5.

e To continue with the computation when the input data is a final distribution of microcracks, a result of

previous steps.

Once the knowledge of the initial conditions of the Cauchy problem is completed, the motion of the
body that will produce the evolution under study should be given. In a general simulation program, this
information will be provided by the CLP.

After the motion is specified, the gradient and the divergence of v are evaluated. With this information,
the process of integration of the approximating system (29) starts.

We have equipped our code with two integration routines, an embedded Runge-Kutta method (Calvo
et al., 1990) for non-stiff problem (Hairer et al., 1991) and a variable step size BDF for stiff problem (Hairer
et al., 1981). We decide which one should be used by analysing the R—K step size evolution versus stability
and accuracy, that will show us the degree of stiffness of the system. The time integration of Eq. (29) can be
done as part of the time step integration scheme of the general finite element program. At the end of
each computation, the code graphically displays the microcracks distribution approximation at time ¢ or
after a prescribed number of time steps. The corresponding illustration represents for a particle X a picture
(at time ¢) of the density (number of cracks per unit volume per unit of solid angle) of the distribution in
orientation of the population. It also prints out the time evolution of several of the most representative
quantities in the microcracks distribution. All the details related to these routines are given in Vega Miguel
(1996).
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